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Introduction

In this chapter we shall study the principles
of electromechanical energy conversion and their application to simple devices. Electromechanical

encrgy conversion involves the interchange of energy between an electrical and a mechanical 5ys-
tem. When the energy is converted from electrical to mechanical form, the device is displaying
motor action. Generator action involves converting mechanical energy into electrical energy. Elec-

tromechanical energy converters embody three essential features: (1) an electric system, (2) a me-
chanical system, and (3) a coupling field.



Both electric and magnetic fields store energy, and useful mechanical forces can be derived from
them. In air or other gas at normal pressure the dielectric strength of the medium restricts the

working electric field intensity to about 3 X 10° V/m, and consequently the stored electric energy
density to

10 . ,
== (3 X 109 ~ 40 J/m
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where ¢, is the permittivity of free space, given by 10-*/(36x) or 8.854 X 10~ F/m, and E is
the electric field intensity. This corresponds to a force density of 40 N/m?,



While there is no
comparable restriction on magnetic fields, the saturation of ferromagnetic media required to com-
plete the magnetic circuit limits the working magnetic flux density to about 1.6 T, for which the
stored magnetic energy density in air is about
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where pq is the permeability of free space, and B is the magnetic flux density. As this i nearly
25,000 times as much as for the electric field, almost all industrial electric machines are magnetic
in principle and are magnetic-field devices.
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Principle of induction

Three basic principles associated with all electromagnetic devices are (1) induction,
(2) interaction, and (3) alignment.

PRINCIPLE OF INDUCTION

The induced emf is given by Faraday’s law of induction:

_an_ _ .. d¢
dt N

The induced emf will be acting in the direction
of positive current as shown in Figure (b) with a source (or generator) convention. Sometimes



it is more convenient to consider the emf as directed in opposition to positive current, as shown in
(a) with a load (or sink, or motor) convention, in which case

_ ., d_ | . do
e——-l-dt +th

Circuit conventions: (a) load (or sink, or motor) convention
(note that the power into the circuit is positive when v and i are positive),
(b) source (or generator) convention (note that the power delivered by this
circuit to the external circuit is positive when v and i are positive).
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(b)
The change of flux linkage in a coil may occur in one of the following three ways:

a. The flux remaining constant, the coil moves through it.

b. The coil remaining stationary with respect to the flux, the flux varies in magnitude
with time.

¢. The coil may move through a time-varying flux; that is to say, both changes may
occur together.



Principle of interaction

PRINCIPLE OF INTERACTION

—_———

(c)

(a)



Consider the flux density B of an undisturbed
uniform field, shown in Figure (4}, on which the introduction of a current-carrying conductor
Imposes a corresponding field component, developing the resultant as in Figure (b for the
case In which the current is directed into and perpendicular to the plane of the paper, as symbolized
by the cross in the figure. In the neighborhood of the conductor, as seen in Figure (b, the
resultant flux density is greater than B on one side and less than B on the other side. Figure (¢
shows the conditions corresponding to the current’s being directed out of and perpendicular to the
plane of the paper, as symbolized by the dot. The direction of the mechanical force developed is

such that it tends to restore the field to its original undisturbed and uniform configuration, as
shown in Figures  (b) and (]



Torque produced by forces caused by interaction of

current-carrying conductors and magnetic fields.
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The figure indicates a one-turn coil in a magnetic field, and
illustrates how torque is produced by forces caused by interaction
of current-carrying conductors and magnetic fields.



Principle of alighment

PRINCIPLE OF ALIGNMENT

ferromagnetic pieces

magnetic flux lines



Pices of highly permeable material such as iron situated in an ambient medium of low per-
meability, such as air, in which a magnetic ficld is established, experience mechanical forces that
tend to align them with the field direction in such a way that the reluctance of the system is
minimized, This principle of alignment is illustrated in Figure ~ , showing the direction of forces.
The force 15 always in such a direction that the net magnetic reluctance is reduced, and the mag-
netic flux path is shortened.

With this general background we shall proceed to evaluate the electromagnetic forces and torques
assoclated with magnetic-field systems.
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Energy stored in magnetic field

ENERGY STORED IN MAGNETIC FIELD

Graphical interpretation of energy and
coenergy in a singly excited nonlinear system.

B or A or ¢
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Sincev=Ri+e
vi=Rir+eli
Where (v i) is the electric input, (R i?)is the losses in

R, and consequently (e i) is the power going to
magnetic circuit.

The energy is given by:
Energy = j power dt

If the current increases from o to i from t=0 to ¢,
then
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Coenergy W, '’

The coenergy is defined as:

Wi = Ai— W, = j

i F H
Atii:j ¢ dF = Fﬂiumgj b dH
i) ] 0

& W, + W), = Ai

For a linear magnetic system, the A-i characteristic is a straight line, in which

case the magnetic energy and coenerqgy are always equal in magnitude.

1 1 1 1
Wy = Wp= S Adi=SF¢ = BHxVolume= _Li?



“Forces and torques in magnetic field

systems

FORCES AND TORQUES IN MAGNETIC FIELD SYSTEMS

For the case of a sink of electrical energy, such as an electric motor, the principle of conservation
of energy allows one to write:

Electrical input  _ Mechanical output | Increase in stored , Energy loss
energy from source ~ energy to load field energy converted to heat

The energy losses associated with this form of energy conversion are (a) the energy loss due to the
resistances of the circuits, (b) the energy loss due to friction and windage associated with motion,
and (c) the energy loss associated with the coupling field. Considering the coupling field to be a
magnetic field, the field losses are due to hysteresis and eddy-current losses, i.e., the core losses in
the magnetic system. Since these losses are usually small, they may be neglected, or their effect
may be included in the lossy portion of the electrical system. Then, considering only the conser-
vative (or lossless) portion of the system, one has



Electrical energy from  Mechanical energy to load  Increase in magnetic-
source minus electrical = plus mechanical system =+ coupling field energy
system losses losses stored

or
Input electrical energy
to the lossless = Mechanical work done + Increase in stored energy

electromechanical system

The ingrease In energy stored in the magnetic field is considered here, while neglecting the energy
stored in the electric field. In incremental form, in time dt,

AW, = dw + dw,



vidt = —Fdx + dw,

where (—F dx) corresponds to the mechanical output of the lossless electromechanical system,
which may also be expressed as (F, dx), in which F, is the mechanical force of electrical origin
due to magnetic field coupling. Then it follows

Fdx=vidt— dw,
where dW,, is the increase in energy stored in the magnetic field, and dx is an arbitrary incre-
mental displacement. Since v, which is the same as the induced emf in the lossless electrome-

chanical system, can be expressed in terms of the flux linkage A by means of Faraday’s law of
induction as

F.dx =id\N— dw,
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In a simple electromechanical system with a singly-excited electrical system and a mechanical
system consisting of only one-dimensional motion, such as the one shown in Figure , the in-
dependent variable on the electrical side is either the current i or the flux linkage A.

A simple electromechanical system.

J<—— ferromagnetic core

iron bar



The A-i characteristic of the nonlinear magnetic system with no core loss
is given by a single-valued nonlinear relationship, typically shown in
Figure.

. - Graphical interpretation of energy and
coenergy in a singly excited nonlinear system.

B or A or »

energy W, __

/ nonlinear relationship

- coenergy W’ __

= H or/ or F



Thus, if the independent variables are the current i
and the coordinate x, then the flux linkage A is a
function of both i and x:

A=A@l,x)

in which case d\ can be expressed as

_a o
d\ = ¥ d1+axdx

where di is an arbitrary incremental change in i. Also, since the stored magnetic energy is also a
function of i and x, it follows that

W . , OW,
5 di F 3% dx

0

aw,, =
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Substituting, we get:
Fedx—( Fye tax)dx-’f—( Y al)dt

In order that the force F, be independent of the change in the current i (and A) during the arbitrary
displacement, the coefficient of di must be zero. Consequently, the force F, is

always given by

(l x) e oA(i, x)
F. dax

in which W, and \ are functions of independent variables i and x. It is possible to express Equation
in a simpler form in terms of magnetic coenergy W,

ow,, (i, x

Fo=+ ox



If, on the other hand, the independent variables are chosen as A and x, it follows that

i =i\ x)
b b
di = axd" + Bxdx
Wy, W
aw,, = Y d\ + I dx
L e oW, oW,
F,dx=idA\ ax d\ ox dx
or
Fo=— IWm(A, X)



Note that W__ in this equation is a function of independent variables A and x.
This equation may also be written as:

oW, (A, x) X di(\, x)
ox ox -

F,



MECHANICAL FORCE OF ELECTRICAL ORIGIN CAUSED BY THE MAGNETIC
COUPLING FIELD

PN
Stored magnetic energy W, = J; faX
; i )
Magnetic coenergy Wn' = s A di
Relation between energy and coenergy Whn + Wa' = N

Conservation of energy principle applied to
conservative coupling fields for an arbitrary Fedx = /idx — dW,
displacement dx

Independent Electromechanical Coupling Force Electromechanical Coupling Force
Variables Evaluated from Stored Magnetic Energy Evaluated from Magnetic Coenergy
Current 7 OWpn(i, x ON(T, X oW, (i, x
_ Fo— _ Wali) | M) Fo— g W' ()
Coordinate x ox ox Ox
Flux Linkage A e OW(N\, x) o IW' (N x) N Ai(\, x)
Coordinate x c ax € ax Ax

Note: For the case of a rotational electromechanical system, the force F, and
the linear displacement dx are to be replaced by the torque 7, and the angular
displacement df, respectively.



Energy balance in a nonlinear electromechanical system:
(a) constant current operation, (b) constant flux linkage (or voltage)
operation

A A
\ \

: X = dx
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For a linear magnetic system, the A-i characteristic is a straight line, in which case the
magnetic enerqgy and coenerqy are always equal in magnitude.

1 1 1 1
Trl-'rm= Irl-'rl.,;1= E.-;Li= EF:‘,ﬁ' = EEH ® Volume = ELI"'

from which



It should now be clear that, in order for energy conversion to take place, the electromechanical
device must have at least one component capable of storing encrgy.

While the foregoing analysis is concerned with the force F,
and the linear displacement dl, for the case of a rotational electromechanica system, the torque
T, and the angular displacement 9 must be introduced,



Example (1)

Example (1)
The A-i relationship for an electromechanical system show is given by

A simple electromechanical system.

(@]
'R

-«— ferromagnetic core

iron bar
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- 0.1
g

which holds good between the limits 0 </ < 4 Aand 0.04 < g <0.10 m. If the current
is maintained at 2A, find the mechanical force (of electrical origin caused by the magnetic
coupling field) on the iron bar for g = 0.06 m.



Solution

1/2
f Adi = f 019" d'=01—§—13/2J0uIe5

F, = OWm'(i,g) _ 8 [01 2 .3,2] _ 012 4

dg glg 3 ]
Forg = 0.06 mand /= 2 A, one obtains

01 L2
Fe = 0.062>< 3

X (232 = —52.37 newtons

The negative sign indicates that the force F acts in such a direction as to decrease the
air-gap length g. Note that a positive displacement dx in Figure corresponds to a
reduction dg in the air-gap length, i.e., dx = —dg.



This problem may alternatively be solved by expressing / as a function of A and g, eval-
uating the magnetic energy Wp,



Wheni=2Aand g = 0.06 m,

\ 01X 2m
0.06
and
013X 2% 1 2X006
Fe = 0060 X3 X o1
01 _ 2

X — X 232 = —5237 N

~ 0062 3

which is the same as the result obtained before. The selection of the energy or coenergy
function as a basis for analysis is a matter of convenience, depending upon the initial

descriotion of the svstem and the desired variables in the result.
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Example (2)

Example (2)

The magnetic structure shown with dimensions in the following figure is made out of a
ferromagnetic material that has negligible reluctance. The rotor is free to rotate about a
vertical axis. Neglect leakage and fringing.

a. Obtain an expression for the torque acting on the rotor.

b. Calculate the torque for a current of 1.5 amps and the dimensions given with
the figure.

c. If the maximum flux density in the airgap is to be limited to 1.5 Wb/m?
because of saturation in the ferromagnetic structure, compute the maximum
torque of the device.



i stator (stationary member)

/

N = 2,000 turns

rotor (rotating member)

Axial length perpendicular to the plane of the paper = h = 0.05 m
Length of a single airgap = g = 0.004 m
Radius of rotor face = r = 0.04 m



Solution

a. Choosing as independent variables the current i and the space coordinate 6,
the expression for the torque is given by

_ IWw'(i, )
a6

Since the air-gap region is linear, the magnetic energy or coenergy density In
the air gap is given by

Te

—_— —_— i 3
e 5 joules/m

Wy = Wpn



where By, is the air-gap flux density, Hy is the air-gap field intensity, and ug is
the permeablllty of free space. Noting that the total length of the air gap is 29,
the volume of the overall air-gap region is calculated as

2gh(r + 0.5g) § m?

where # is the angle in radians between the stator-pole tip and the adjacent
rotor-pole tip as shown in the figure, and [(r + 0.5g) 6] is the mean arc length
in the air gap. Then

W,, = ue Hg? gh(r + 0.5g) 0 joules

Te = mo Hg? gh(r + 0.5g)
B 2
= —#i gh(r + 0.5g) newton - meters
0



The torque acts in such a direction as to align the rotor pole faces with the
stator pole faces, in the positive direction of § as shown. The relationship
between the current and the air-gap field intensity H, is given by

Ni = 2g Hg

or



Making use of the above, the mechanical torque T, of electrical origin caused
by the magnetic coupling field may be expressed as

Mo INT 17 N2 2

Te = 492 gh(r + 0.5g)

or
j2 po NV? N2 ]
Te = 5 29 h(r + 0.5g)



For a linear magnetic system, 7, may also be calculated from

LT

Te =32 a6
For our problem,

e N2 _ puog AN?

R /

where

A = cross-sectional area of the air-gap region

= h(r + 0.5 g) 6,

and

/| = 2 g, the total air-gap length

The same result for 7, is obtained by substituting and working out the details.



b. The self-inductance L in terms of 8 is given by

4 X 10-7 X 0.05(0.04 + 0.002) X 2,0002

L 0.008 & henry
or
L = 1.320
2 2
Te = £.a = (19) X 1.32 = 1.485 newton-meters

2 df 2



Note that the torque acts to increase the inductance by pulling on the rotor so
as to reduce the reluctance of the magnetic path linking the coil.

The air-gap flux density By corresponding to a current of 1.5 amps is given
by

wo Ni _ 4w X 107 X 2,000 X 1.5

By = o Hg = 55 2 X 0.004 =047t

c. Corresponding to Bgm of 1.5 Wb/m?, the current is calculated as

ax

. Bg(2g) 1.5 X 0.008 .
max = —, N~ 4z X 10-7 X 2,000 /T A
2 2
To = ’5‘;; = 4';7 X 132 = 1502 N-m

This may also be obtained by directly substituting in the torque expression
given in terms of B,,.



Singly excited magnetic field systems

Before we proceed to analyze magnetic field systems excited by more than one electrical

circuit, let us consider an elementary reluctance machine that is singly excited, carrying only
one winding on its stationary member, called the stator.

Figure (a), shows an elementary rotating reluctance machine. We shall assume that the

reluctances of the stator and rotor iron are negligible; also, we shall neglect the leakage
and fringing.

The stator and rotor poles are so shaped that the reluctance varies sinusoidally about a mean
value as shown in Figure (b). R, is the reluctance of the magnetic system when the rotor is
in the direct-axis position (§ = 0), and R, is the reluctance when the rotor is in the quadrature-
axis position (# = w/2). For each revolution of the rotor, there are two cycles of reluctance. The
space variation of inductance is also of double frequency, since the inductance is inversely pro-
portional to the reluctance. The inductance of the stator winding as a function of space coordinate
6 measured from the direct axis, as shown in Figure (a) is given by

L(0) = Ly + L, cos 20
which is sketched in Figure (c). Let the stator coil excitation be
i, = I, sin wt

We shall investigate the instantaneous and average electromagnetic torques produced because of
this sinusoidal excitation whose angular frequency is w;.



A singly-excited magnetic field system with a rotor: (a) an
elementary rotating reluctance machine, (b) reluctance variation with rotor
position, (¢) inductance variation with rotor position.

— VS +o
Y's

stator pole axis

(d-axis or
direct axis)

rotor axis

interpole axis
(g-axis or
quadrature axis)

(@)






The electromagnetic torque can be found from the coenergy in the magnetic

field of the air-gap region, since the independent variables are the current i and the space coor-
dinate 6.

W = W, == L(0) i;

oL
2
and

_ W', 0) _ iiz aL(f)
el 27 a0

Substituting the current and inductance variations, one obtains

T,

T,= —I? L, sin 20 sin® wt

Let the rotor now be allowed to rotate at an angular velocity w,, so that at any instant @ is given
by

0= w,t — 6

where § = —¢ is the angular position of the rotor at £ = 0, when the current i, is zero.



sin? 4 = >
and

: I s 1 .

sin A cos B = Tsm{A + B) + - sin (A — B)
The instantaneous electromagnetic torque is then given by

1 .
T, = — ?Isz L2[sm 2(w,,t — 6)
— - sin 2[(wn + @) 1 — 0]

o4 —é—sin S = )i 5]]



e e

The above torque expression consists of three sinusoidally time-varying terms of frequencies 2w,
2(wn T w,) and 2(w,, — w,). The time-average value of these three sine terms is zero unless, in
one of them, the coefficient of 1 becomes zero. Since w,, # 0, the necessary condition for nonzero
time-average torque is then

[ m] =]

corresponding to which

- —i—[sz L, sin 2

Expressed in terms of L, and L,, the maximum and minimum values of inductance as shown in
Figure (¢), known as the direct-axis inductance and quadrature-axis inductance, respectively,

(Te)av = = %_Isz(l‘d - Lq) $in 20



\ /
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Since the torque in this particular electromechanical energy converter is due to the
variation of reluctance with rotor position, the device is known as a synchronous
reluctance machine. As seen from equation, the torque is zero if L, = L, i.e. if there is no
inductance or reluctance variation with rotor position. The Figure shows the variation of
the average electromechanical torque developed by the machine as a function of the
angle 6, which is known as the torque angle.

It should be emphasized that the singly excited synchronous reluctance motor cannot start by
itself.

Variation of the electromagnetic torque developed by a
synchronous reluctance machine.

d(Te)ay

————— Vel?g (Ly—Ly)

~WwlPg(Ly—Ly) [———=

B

motor operation =+ * generalor operation

T, >0 T, <0
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Inductance

INDUCTANCE

An electric circuit in which the current links the magnetic flux is said to have inductance. A single
loop or an inductor carrying a current i is linked by its own flux, as shown in Figure . If the
medium in the flux path has a linear magnetic characteristic (i.e., constant permeability), then
the relationship between the flux linkages A and the current i is linear, and the slope of the linear
A-i characteristic gives the self-inductance, defined as flux linkage per ampere:

v N turns 1)




The above equation ilustrates that the inductance is & function of the geometry and permeability,
and that in a linear system, it s ndependent of voltage, current, and frequency. The energy stored
i the magneticfeld of an inductor 1n a inear medium is given by



When more than one loop o circut is preseat, the fux produced by the current in ong loop may
ik another loop, thereby inducing & current in that loop; such loaps are sad to be mutually
coupled, and there exists & mutual inductance between such loops. The mutual inductance be-
tween two circuts 1 defined as the fux inkage produced im one circuit by & currentof one ampere
n the other circuit, Let us now consider a pair of mutually coupled nductors, asshown in Figure



Mutually coupled inductors.

N, turns
N,tumns v, vy Ny turns b0 Vs
open open
—O0  O— O~
w

(@) (b)

(c)



The self-inductances L,; and L,, of inductors 1 and 2 respectively are given by
All
L]] e
51
and
Lzz = @
5)

where A, is the flux linkage of inductor 1 produced by its own current i;, and A, is the flux linkage
of inductor 2 produced by its own current i,. The mutual inductances L,, and L, are given by

A
L= %
2
and
A
Ly = —

where A, is the flux linkage of inductor 1 produced by the current i, in inductor 2, and A;, is the
flux linkage of inductor 2 produced by the current i; in inductor 1.



If a current of i, flows in inductor 1 while the current in inductor 2 is zero, the equivalent fluxes
are given by

A
O ]_\}f
and
A
¢ = N_Z:

where Ny and NV, are the number of turns of inductors 1 and 2 respectively. That part of the flux

of inductor 1 that does not link any turn of inductor 2 is known as the equivalent Jeakage flux of
inductor 1:

®n = ¢ — ¢y

Similarly,

b = ¢ — P12



The coefficient of coupling is given by

k = \/klkz

where

ki = ¢u/¢n and ky = ¢13/dss

When k approaches unity, the two inductors are said to be tightly coupled; and when & is much
less than unity, they are said to be loosely coupled. While the coefficient of coupling can never
exceed unity, it may be as high as 0.998 for iron-core transformers; it may be smaller than 0.5 for
air-core transformers.

When there are only two inductively coupled circuits, the symbol M is frequently used to rep-
resent the mutual inductance; it can be shown that the mutual inductance between two electric
circuits coupled by a homogeneous medium of constant permeability is reciprocal:

M=1L,= Ly = k\/Lu Ly,

The energy considerations that lead to such a conclusion are taken up in a problem at the end of
the chapter as an exercise for the student.



Let us next consider the energy stored in a pair of mutually coupled inductors:

=f1>\1 iy Ay
W 2 * 2

where \, and ), are the total flux linkages of inductors 1 and 2 respectively.

l. .
W=7 O+ M) + 3 O + )

1 ; 1 s 1 . 1 .
= '2_L11 i+ E‘le Iyip T ‘i‘Lzz i} + ?LZI 111z
or
1 ; i 1 :
Wm : _Z"L]I 112 + Mll Iy + ‘2_"L22 122



Going back to the pair of mutually coupled inductors shown in Figure , the flux-linkage
relations and the voltage equations for circuits 1 and 2 are given by the following, while neglecting
the resistances associated with the cols:

M =Ai T A= Ly i + Lypiy = Ly iy T Mi,

A = An + Azz LZ] Il + L22 12 Mll + Ln Iy

e dkl dll dlz
==y = Loy dt ey
" _dh _ dt, diy
s Pa dt T Ly dt

where p is the derivative operator d/dl.



[n order to avoid drawing detailed sketches of windings showing the sense in which each coil is
wound, a dot convention is developed.

Dot notation for a pair of mutually coupled inductors:
(a) dots on upper terminals, (b) dots on lower terminals.

M M
/;1 '/\‘ j2 1.1 ’/\ 12
+O > +~—04 +O > (0 +
® [ ]
v, Ly % é Lo v, Vi Ly é Loz Vs
® L
-0 Qi) 0-




Multiply excited magnetic field systems

MULTIPLY EXCITED MAGNETIC FIELD SYSTEMS

Let us consider an elementary multiply
excited magnetic system shown in Figure with two sets of electrical terminals and one me-
chanical terminal.

An elementary doubly-excited magnetic-field system.

e Vs +0
Y's




The flux linkages of the stator and rotor windings can be expressed as functions
of the coil currents:

ks = Lss ls+ Lsr ir
Ar = Ls‘r is + er ir

where L, and L,, are the self-inductances of the stator and rotor coils respectively, and L,, is the
stator-rotor mutual inductance. All these inductances are generally functions of the angle 6 be-

tween the magnetic axes of the stator and rotor windings.

Vs - Rs is + p AS
= Ryi; + Ly(p iy) + if(p L) + Lu(p i) + ifp L)

<
-
|

R, i, + pA,
R, i,+ L,piy) +ifpL,) + L.(pi)+ i(p L,)



Neglecting the reluctances of the stator- and rotor-iron circuits, the electro-
magnetic torque can be found either from the energy or coenergy stored in the magnetic field of
the air-gap region:

— G an(Ass Ar: 9) s anl(is: ir: 9)
T. Y LT

For a linear system, the energy or coenergy stored in a pair of mutually coupled inductors is given
by

Wiy i 0) = 5 L i + Ly iy + o L, i



The first and third terms on the right-hand side of Equation ~, involving angular rate of
change of self-inductance are the reluctance-torgue terms; the middle term, involving angular rate
of change of mutual inductance, is the torque caused by the interaction of fields produced by the
stator and rotor currents, It i this mutual-inductance torque that is most commonly exploited in
practical rotating machines. Multiply excited systems with more than two sets of electrical ter-
minals can be handled in a similar manner as for two pairs by assigning additional independent
variables to the terminals,

[£ the self-inductances L, and L, are independent of angle f, the reluctance torque is zero, and
the torque is produced only by the mutual term L,(6).



Example (3)

Example (3)

Consider an elementary two-pole rotating machine with a uniform (or smooth) air gap as
shown in Figure , in which the cylindrical rotor is mounted within the stator made up
of a hollow cylinder coaxial with the rotor. The stator and rotor windings are distributed
over a number of slots so that their mmf waves can be approximated by space sinusoids.
A consequence of such a type of construction is that one can fairly assume that the self-
inductances L, and L,, are constant, but the mutual inductance L, is given by

o =1Lcosd



==

n elementary two-pole rotating machine with uniform air-gap

stator winding

magnetic axis stator coil

of statorr

magnetic axis of rotor

(@) (b)



where 6 is the angle between the magnetic axes of the stator and rotor windings. Let the
currents in the two windings be given by

s = 14 COS @yl
i, = I,c0s (w,t + @)
and let the rotor rotate at an angular velocity
Wm = f rad/s
such that the position of the rotor at any instant is given by

= w,,,t + Bo



Assume that the reluctances of the stator and rotor-iron circuits are negligible, and that
the stator and rotor are concentric cylinders neglecting the effect of slot openings.

d.

Derive an expression for the instantaneous electromagnetic torque developed
by the machine.
Find the necessary condition for the development of an average torque in the
machine.
Obtain the expression for the average torque corresponding to the following
Cases:

wg=w=wp=0a=0

(i) ws = @y, wp =10
(i) w,—O ws—wm,a—O
(V) Wm — w,, Where w, and w, are two different angular frequencies



~— Solution
a. With constant L _and L

To=iniZor = —i i L sing

when the variation of L,, as a function of 6 is substituted. For the given current

variations, the instantaneous electromagnetic torque developed by the
machine is given by

Te = —L I I, COSs wst cos(w,t + a) sin(wmt + o)

Using the trigonometric identities, the product of the three trigonometric terms
in the above equation may be expressed to yield

— il@#’ [sin{[wm + (ws + w)]t + a + 6y

+ sinflwm — (ws + W)t — a + Bo)
+ sinflwy + (ws — w)]t — a + Bo)
+ sinf[wy, — (ws — W)t + a + 90}]

Te
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b. The average value of each of the sinusoidal terms in the above equation is
zero, unless the coefficient of ¢ is zero in that term; that is, the average torque
(Te)ay developed by the machine is zero unless

Wn = T(ws = w)

which may also be expressed as

|wm|=|wsiw,|



e e
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¢. (i) The excitations are direct currents I, and I.. For the given conditions of w,
=w,=wp=0anda =0,
Te=—LI 1, sin b,
which is a constant. As such
(Te)av = —L I5 I, sin 6,
The machine operates as a dc rotary actuator developing a constant

torque against any displacement 4, produced by an external torque
applied to the rotor shaft,
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(i) With wg = w,, both excitations are alternating currents of the same fre-
quency. For the conditions ws = w, and w, = 0

LII . _
lg= I [sin(2wst + a + ) + sin(—2wst — & + 6)

T sin(—a + ) + sin(a + 6y)]

The machine operates as an ac rotary actuator, and the developed torque
is fluctuating. The average value of the torque is

(Te)aw = — ngl’sinﬁocosa

Note that o becomes zero if the two windings are connected in series, in
which case cos a becomes unity.



.

(i) With w, = 0, the rotor excitation is a direct current 1,. For the conditions

w =0, w, =

or

wm, and a = 0,

Ty == L {: I’ [sin(2wgt + Bp) + sin(fp) + sin(2wst + 0)
+ sin(fy)]
Te = — & 125 L, [sin(2wst + B) + sin ]

The machine operates as an idealized single-phase synchronous machine,
and the instantaneous torque is pulsating. The average value of the

torque is

LI,

(Te)ay = — —a—Sin b,

2
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since the average value of the double-frequency sine term is zero. If the
machine is brought up to synchronous speed (w, = ws), an average
unidirectional torque is established, and continuous energy conversion
takes place at synchronous speed. Note that the machine is not self-
starting, since an average unidirectional torque is not developed at

wy = 0 with the specified electrical excitations.

(iv) With w, = ws — w,, the instantaneous torque is given by

[, == L{:I’ [sin2ust T a T fg) T sin(—2w,t — a T b

+ sin2wst — 2wt — a + ) T sin(a + 6y)]




The maching operates as a single-phase induction machine, and the
instantaneous torque is pulsating. The average value of the torque is

LI
4

It the machine is brought up to a speed of w,, = (ws — ), an average
unidirectional torque is established, and continuous energy conversion
takes place at the asynchronous speed of w,,. Note that the machine is

not self-starting, since an average unidirectional torque is not developed
at wy, = 0 with the specified electrical excitations.

(Te)av T

sinfa 1 )



The pulsating torque, which may be acceptable in small machines, is in
general an undesirable feature in a rotating machine, working either as a
generator or a motor, since it may result in speed fluctuation, vibration,
noise, and waste of energy. In magnetic-field systems excited Dy single-
phase alternating sources, the torque pulsates while the speed is
relatively constant; consequently, pulsating power becomes a feature. This
calls for an improvement; in fact, by employing polyphase windings and
polyphase sources, constant power is developed in a balanced system.



